Hypedrogen has been the holy grail of the renewablistas since the 1970's, when it was also one of the magic bullets that was going to solve air pollution from cars. Here we are 50 years later and we're still burning gasoline (and the oilcos have laughed all the way to the bank). The talk seems to be getting more serious recently. But is it realistic?
Power Engineering magazine has a piece on converting a turbine fired by natural gas to hydrogen fuel. Apparently the only changes involve the burner design and the need to feed a much greater volume of fuel. So far, so good.
But the really interesting part of that article comes down at the very end:
MHPS and Magnum Development have partnered on the idea of building an electrolysis facility near the Intermountain Power Plant around Delta, Utah. The electrolysis–which uses electricity to separate water into its hydrogen and oxygen molecules–would be powered by renewable energy, such as western U.S. solar, wind and hydro. The resulting hydrogen would be stored in underground salt caverns deep beneath the Utah rocky soils.
Ducker estimated that each of those salt caverns potentially could store 150,000 to 200,000 MWh of hydrogen capacity. The area could offer dozens of those caverns, all impermeable and yielding no energy loss.
“Think of it as a really really big battery,” he said.
A really really big, if rather lossy, battery. I note that storage in salt domes avoids any issues of sulfate minerals which hydrogen could react with and be lost as hydrogen sulfide and water. You'd likely have that trouble if you tried to use old gas wells to store hydrogen. Methane is an extraordinarily stable molecule; hydrogen is not.
Let's assume, out of charity, that those numbers are the energy you could get out of the hydrogen power plant rather than the 56% larger requirement for stored energy, or the even greater figure for energy input to make it in the first place. 150,000 to 200,000 MWh of energy sure sounds like a lot if you're not familiar with the field, but it's roughly 1 week of generation from a 1000 MW power plant... of which the USA has the equivalent of about 460 running flat out on average. A reserve of 90 days of energy (what the Trump administration wants at least some plants to hold in case of fuel supply disruptions) is roughly 13 weeks, or about 1 dozen such reservoirs to supply just one 1000 MW plant. "Dozens" of reservoirs translates to just a handful of plants being able to ride through a sustained period of energy famine... such as the most populated parts of the USA endure every winter when the sun heads south. To supply the electric grid reliably you'd need close to 10,000 of them. And that wouldn't supply the requirements for heating fuel, for vehicle fuel, for industrial heat and chemical feedstock.
You'd need probably 20,000 such reservoirs just to have 90 days of energy security. The area has "dozens". The inadequacy of the resource to the task is obvious once you know where to look. And that's just one of the problems you'll face if you try to power any industrial economy on "renewables".
It's time to face facts. The "environmentalists" are demonstrably not doing the arithmetic (and it's arithmetic, not even algebra) to properly understand the magnitude of the gap between their proposals and reality. It's likely that they have been forbidden to do the arithmetic by the people who finance their organizations. Who would benefit from such betrayal? Fossil fuel interests.
Save for a few dissident organizations like Environmental Progress and the Breakthrough Institute, the environmental movement has become a front for fossil fuel interests. They've been corrupted by donor money. Do not trust them. Do not listen to them. And when their activists come to plug "renewables", call them the liars they are.