The Ergosphere
Tuesday, October 09, 2018
 

If power-to-gas (P2G) is the answer, what was the question?

Over at Green Car Congress, "Scottish Scientist" gushes about P2G:
Power to Gas (P2G) is best for (solar, wind etc.) farm-scale energy storage for most farms where there is no possibility of farm-scale pumped hydro.

P2G is excellent for mopping up all the surplus farm power because any energy which P2G can store is an efficiency gain compared to the 100% loss of all curtailed generation.

Grid managers should cease paying curtailment payments and spend the same money more wisely offering incentives to farm operators to install farm-scale energy storage.
In the comment below I had the temerity to ask
Simply not generating surpluses very much or often gets rid of most spilled power too, and also the capital and operating cost of generating it.  What's the goal here?
But mostly I wanted to go into the energetics in greater detail than I did there.

Present-day electrolyzers take around 43 kWh (154.8 MJ) of electricity to produce 1 kg of hydrogen.  This 1 kg of hydrogen has 141.88 MJ higher heating value and 119.96 MJ lower heating value.  Suppose this hydrogen is burned in a non-condensing context, such as a gas-turbine power plant or a kitchen stove.  Almost 1/4 of the input energy is lost between the electrolyzer inefficiencies and the latent heat of the lost water vapor.  Even if burned in a 60% efficient (LHV) CCGT, the net efficiency drops to about 45% before losses in pumping and storage are included.

What IS the goal of this exercise?  Suppose for a moment that it is to displace CO2 emissions.  How effective is P2G for this purpose?  Well, not very.  Replacing 1 kWh generated with OCGTs at 500 gCO2/kWh with 1 kWH generated with best-of-class CCGTs at 320 gCO2/kWh eliminates 180 grams of emissions.  Replacing 1 kWh generated with natural gas with 1 kWH generated by P2G hydrogen eliminates... (working the units)

1 kWh / 43 kWh/kg * 119.96 MJ/kg / 50 MJ/kg(CH4) * 2750 gCO2/kg(CH4) = 153.4 gCO2 eliminated per kWh put into P2G.  This will be roughly the same for any natural gas power plant, as it displaces fuel on a per-MJ LHV basis.

But that's not the end of it.  What's not usually talked about is the effect of "renewables" on the rest of the generating mix.  Due to the high ramp rates of wind and solar, the rest of the generation has to be highly flexible to compensate.  More efficient combined-cycle plants can't ramp quickly due to thermal constraints on the steam side, and they can often only turn their output down by 30% or so.  Given this (absent hydro), less-efficient open-cycle gas turbines are usually the only viable option.  This cuts the maximum thermal efficiency from as high as 62% down to around 40%.

This is a bait-and-switch of enormous size.  To get "renewable energy", you have to increase per-kWh emissions from the NG balancing generators on the order of 55% over what is achievable with CCGTs.  Renewables would require a capacity factor around 35-36% just to break even on emissions; less than that and emissions are WORSE!

America has definitely fallen for the bait-and-switch.  The job now is threefold:
  1. Get to a metric of emissions, period.  Where energy comes from is irrelevant; eliminate all portfolio standards and mandates, FITs, net metering, etc.
  2. Aim at fuel/carbon efficiency rather than RE generation.  RE which forces lower efficiency in the balancing generators can be worse than useless.
  3. Use appropriate market design and system architecture to get efficiency plus resiliency.
There are some options out there which can easily beat 153 gCO2 savings per kWh input.  The problem (if you can call it that) is that they are way, way outside the box of conventional thinking on energy matters.

Labels: , , ,

 
Talk largely about energy and work, but also politics and other random thoughts


Mail Engineer-Poet

(If you're mailing a question, is it already in the FAQ?)

Important links

The FAQ
Glossary
The Reference Library

Blogchild of

Armed and Dangerous

Blogparent of

R-Squared




The best prospect for our energy future:
Flibe Energy

ARCHIVES
January 1990 / February 2004 / March 2004 / June 2004 / July 2004 / August 2004 / September 2004 / October 2004 / November 2004 / December 2004 / January 2005 / February 2005 / March 2005 / April 2005 / May 2005 / June 2005 / July 2005 / August 2005 / September 2005 / October 2005 / November 2005 / December 2005 / January 2006 / February 2006 / March 2006 / April 2006 / May 2006 / June 2006 / July 2006 / August 2006 / September 2006 / October 2006 / November 2006 / December 2006 / January 2007 / February 2007 / March 2007 / April 2007 / December 2007 / January 2008 / May 2008 / June 2008 / August 2008 / October 2008 / November 2008 / December 2008 / February 2009 / March 2009 / April 2009 / May 2009 / June 2009 / July 2009 / August 2009 / September 2009 / October 2009 / November 2009 / December 2009 / January 2010 / April 2010 / May 2010 / June 2010 / July 2010 / August 2010 / September 2010 / October 2010 / November 2010 / December 2010 / January 2011 / February 2011 / March 2011 / April 2011 / May 2011 / July 2011 / August 2011 / September 2011 / October 2011 / April 2013 / November 2013 / December 2013 / January 2014 / February 2014 / March 2014 / April 2014 / July 2014 / August 2014 / September 2014 / October 2014 / November 2014 / February 2015 / April 2015 / October 2015 / March 2016 / April 2016 / May 2016 / June 2016 / July 2016 / November 2016 / December 2016 / February 2017 / May 2017 / June 2017 / September 2017 / October 2017 / November 2017 / March 2018 / May 2018 / June 2018 / October 2018 / December 2018 / January 2019 / March 2019 / June 2019 / October 2019 / November 2019 / March 2020 / June 2020 / December 2020 / March 2021 / April 2021 / May 2021 / July 2021 / January 2022 / February 2022 /


Powered by Blogger

RSS feed

Visits since 2006/05/11: