The Ergosphere
Tuesday, October 09, 2018

If power-to-gas (P2G) is the answer, what was the question?

Over at Green Car Congress, "Scottish Scientist" gushes about P2G:
Power to Gas (P2G) is best for (solar, wind etc.) farm-scale energy storage for most farms where there is no possibility of farm-scale pumped hydro.

P2G is excellent for mopping up all the surplus farm power because any energy which P2G can store is an efficiency gain compared to the 100% loss of all curtailed generation.

Grid managers should cease paying curtailment payments and spend the same money more wisely offering incentives to farm operators to install farm-scale energy storage.
In the comment below I had the temerity to ask
Simply not generating surpluses very much or often gets rid of most spilled power too, and also the capital and operating cost of generating it.  What's the goal here?
But mostly I wanted to go into the energetics in greater detail than I did there.

Present-day electrolyzers take around 43 kWh (154.8 MJ) of electricity to produce 1 kg of hydrogen.  This 1 kg of hydrogen has 141.88 MJ higher heating value and 119.96 MJ lower heating value.  Suppose this hydrogen is burned in a non-condensing context, such as a gas-turbine power plant or a kitchen stove.  Almost 1/4 of the input energy is lost between the electrolyzer inefficiencies and the latent heat of the lost water vapor.  Even if burned in a 60% efficient (LHV) CCGT, the net efficiency drops to about 45% before losses in pumping and storage are included.

What IS the goal of this exercise?  Suppose for a moment that it is to displace CO2 emissions.  How effective is P2G for this purpose?  Well, not very.  Replacing 1 kWh generated with OCGTs at 500 gCO2/kWh with 1 kWH generated with best-of-class CCGTs at 320 gCO2/kWh eliminates 180 grams of emissions.  Replacing 1 kWh generated with natural gas with 1 kWH generated by P2G hydrogen eliminates... (working the units)

1 kWh / 43 kWh/kg * 119.96 MJ/kg / 50 MJ/kg(CH4) * 2750 gCO2/kg(CH4) = 153.4 gCO2 eliminated per kWh put into P2G.  This will be roughly the same for any natural gas power plant, as it displaces fuel on a per-MJ LHV basis.

But that's not the end of it.  What's not usually talked about is the effect of "renewables" on the rest of the generating mix.  Due to the high ramp rates of wind and solar, the rest of the generation has to be highly flexible to compensate.  More efficient combined-cycle plants can't ramp quickly due to thermal constraints on the steam side, and they can often only turn their output down by 30% or so.  Given this (absent hydro), less-efficient open-cycle gas turbines are usually the only viable option.  This cuts the maximum thermal efficiency from as high as 62% down to around 40%.

This is a bait-and-switch of enormous size.  To get "renewable energy", you have to increase per-kWh emissions from the NG balancing generators on the order of 55% over what is achievable with CCGTs.  Renewables would require a capacity factor around 35-36% just to break even on emissions; less than that and emissions are WORSE!

America has definitely fallen for the bait-and-switch.  The job now is threefold:
  1. Get to a metric of emissions, period.  Where energy comes from is irrelevant; eliminate all portfolio standards and mandates, FITs, net metering, etc.
  2. Aim at fuel/carbon efficiency rather than RE generation.  RE which forces lower efficiency in the balancing generators can be worse than useless.
  3. Use appropriate market design and system architecture to get efficiency plus resiliency.
There are some options out there which can easily beat 153 gCO2 savings per kWh input.  The problem (if you can call it that) is that they are way, way outside the box of conventional thinking on energy matters.

Labels: , , ,

Saturday, June 23, 2018

Energy Central just killed The Energy Collective

Management will no longer allow anyone who is not an "energy professional".

That's it for everything TEC was.  Gone.  Finito.  And it looks like the archives will never be back on-line either.  Fortunately, The Wayback Machine has a good snapshot of the site just before it went dark.


Sunday, June 17, 2018

Quote without comment

"Our case is based on science, while the opposition is based on political philosophy. When a nation whose welfare is highly dependent on technology makes vital technological decisions on the basis of political philosophy rather than on the basis of science, it is in mortal danger."
Bernard L. Cohen

Saturday, June 16, 2018

Shredding misconceptions about electricity and motor fuel

And there are one hell of a lot of them out there; few things are so ubiquitous yet opaque to the layman.  Reposting some blog comments in case they are of more general interest:

Ominous Cowherd:
Using Pierre's numbers, 1 gallon of diesel equals 10kWh, so the overnight charge would be 7kWh equals about three quarts.
The EIA says a gallon of diesel is 137452 BTU, or just over 40 kWH(th).  Converted to work in your typical light-duty engine you might get 16 kWh out of it.  Your usual "convenience cord" is capable of 1440 W (120 VAC @ 12 A) so a 7-hour charge can yield as much as 10 kWh from a standard wall outlet.  PHEV batteries have widely varying capacities; the Prius+ has just 4.4 kWh, the Ford Energi models started out at 7.6 kWh and are going up to 9 kWh next year, and the Pacifica plug-in has 16 kWh.  These figures correspond to just over a quart, just under half a gallon and a gallon, respectively.

I used to drive a Passat TDI.  I drove the automatic like a stick and averaged 38 MPG city or highway.  Half a gallon of fuel would take me about 20 miles.  I drive a Fusion Energi now and that's about how far the battery power will take me (depending on speed, terrain and weather of course), so that seems like a pretty fair equivalence.
you spend 18 hours charging to get energy equivalent to roughly 1.2 gallons of diesel per day.
If you had a Chrysler Pacifica charging off a standard wall outlet for 18 hours a day, you'd get up to about 1.6 gallons-equivalent.  Vehicles with smaller batteries would reach full charge and have to stop; the Fusion reaches full in about 5 hours from your garden-variety wall outlet and about 90 minutes on a Level 2 charger.

1.6 gallons a day 250 days a year is 400 gallons-equivalent.  The EPA-rated fuel consumption for the Pacifica hybrid is  32 MPG, so for 15,000 miles/year the expected fuel consumption is about 470 gallons.  Replacing 400 of those gallons with electric power slashes the net fuel requirement by 85%.  My experience is consistent.  The standard drivetrain in my car is rated at 26 MPG, and I'm averaging just over 130 MPG per the dash display.
To compete with IC, you need to be able to drive hundreds of miles, with a heater blasting hot air, then fuel up in a few minutes and do it again. To get a 300 mile range, you need ten times that amount of energy, or more.
You don't need to compete with IC to replace most of your fuel.  Most trips are short trips, and engines are very inefficient when cold.  If you electrify most or all of the short trips and eliminate most of the cold starts, you've eliminated most of the fuel consumption with it.  If you delay the engine starts until the vehicle has left the city, you get rid of the pollution generated in the city.  The engine also warms up faster if run under load, improving the efficiency.
Our existing grid is generally pretty heavily loaded.
Back in 2004 it would have taken ~180 GW to replace all US gasoline and diesel with electricity.  Average electric consumption last year was 458 GW but nameplate generating capacity was 1074 GW.  Some of that is unreliable wind and PV and more is loaded-to-max nuclear and limited hydro, but finding 180 GW in that 616 GW difference wouldn't be all that hard.  Ironically, it would probably be hardest in California which has lots of vehicles but not much electric demand anymore after chasing out so much industry.

Another owner tries to kill The Energy Collective

It was announced some time ago that The Energy Collective was being taken over by the Power Industry Network (

Perhaps associated with this, the site had some major slowdowns and technical problems for a week or two.  Then all of a sudden it just went dark, with a message that maintenance was going on.  Now all blog entry links redirect to a page about re-hosting.  Those discussions appear to be toast; nobody will revisit them if they ever re-appear.  This follows the last transfer from the Drupal blog software, in which ham-fisted conversion destroyed most of the formatting (and thus legibility) of existing posts and comments.  Heaven only knows what will be left after this new crew gets done mangling it.

The new owners don't care about human factors like... readability.  Comment text is colored #8D8D8D (very light gray) on a white background.  How are you supposed to read that?  Do these clowns not know anyone who reads?

So far I've seen two new entries and one other comment from other TEC regulars.  We'll see how many of them bother to come back.  I'm betting it won't be many, as they've already found other things to do with their time.


Friday, May 25, 2018

When physics is on the line, face-palm edition

Via a correspondent who asked to remain anonymous and unquoted, I received some screenshots of panels from a brand-new comic called Alt*Hero.  Story authorship is "Vox Day", the pen-name of one Theodore Beale.  He claims to have a 150-ish IQ and refers to Aristotle regularly.

I'm passingly familiar with this guy; he comes up with clever expressions.  He used to get held up as an example of scientific pig-ignorance on scienceblogs, back when I read that site.  So what does he write into his comic?
A 90-kilogram object with an acceleration of 3,825 kilometers per hour strikes with the force of 10 tons
In short, physics bullshit.  It's bullshit from the units (acceleration is in units of distance/time²) through to the figures.  Per the story, the "Redshift" character can hit supersonic speeds from a standing start in just a few meters.  Figuring constant acceleration from 0 to 1000 m/s in 10 meters, the force required isn't "10 tons", it's 4.5 meganewtons (the weight of about 460 metric tons).  That's almost 2 orders of magnitude greater.  Impact into an immobile object would be orders of magnitude more.

Suppose you launched 90 kg to 1000 m/sec from a building.  A 460-ton shock would probably cave floors in and might even knock the building down.  That's physics.  More to the point, a skydiver in free-fall in the arrowhead configuration reaches terminal velocity at about 200 MPH.  There's no way a runner, however strong, could reach > 1 km/sec speeds by pushing against the ground (and at Mach 3 he'd broil himself from the air heated by his own shock front).  Another character flies, without using wings or any other aerodynamic method.  It is obvious that Physics As We Know It is not operating here (it's a comic book, Pure Fucking Magic is not just allowed but expected).

This begs the question:  why the pseudo-physics bullshit?  Does he not know any better?

Vox Day has long harped about scientific fraud and error, and per my correspondent even made up several new words purporting to help describe science accurately.  Ironically, this supposedly 150-IQ guy can't even hack first-semester physics.  (Does this extend to things like chemistry and biology?  Almost certainly the latter.)  He has some massive gaps in his abilities and understanding—worse, in subjects that people of much lesser IQ scores have mastered without undue difficulty.  That has to sting.  It looks like his enmity towards science and its practitioners comes down, not to principled differences, but a large dose of envy.  Face-palm time.

(As for the comic itself, it looks fun.  I may buy it, and that will make it one out of perhaps 5 I ever spent money on.  But seriously, if diversity box-checking in fiction is a turn-off, so's cringeworthy stuff like this.  Best just not to go there.)

Linkage where linkage is due:


Monday, March 19, 2018

Mail broken. Thanks for nothing, Yahoo.

Once more, good ol' Yahoo Mail has decided to screw things up totally.  Their new mail form does not work on desktop.  At ALL.  Here's a brief list of problems:
And to add insult to injury,
The "flat" UI style is considerably harder to use than the previous version, and heads should have rolled over that abortion alone.  But this?  If the vice president in charge isn't fired, the company is just not serious about running the service.

Oh, and Yahoo?  If you're reading this, just switch everyone back to the previous version.  You obviously have no idea when something is ready for prime time.

Edit:  Yahoo made the new version fail only with Pale Moon.  Apparently they tested with other browsers.  I was able to get in and switch back to the old version using a different browser.

Tuesday, November 07, 2017

Don't mess with the engineers when physics is on the line

This is an open letter to Brandon Schollenberger, also sent by e-mail.

I received a pointer to your essay.  No, lying is not OK.  Neither is spouting off in utter ignorance.

TL;DR  You're not right.  You're not even wrong.  You wrote a mish-mash of conceptual nonsense that is cringeworthy to every student who scraped out a passing grade in AP Physics, and quite a few who never made it that far.  I'd say take it down NOW, but... it's already too late for you; someone archived it 2 days ago.  The web never forgets.

At its core, you do not understand the difference between energy and power.  Gallons of gasoline are a measure of energy.  Horsepower are a measure of power.  You can burn 5 gallons of gasoline making 5 horsepower for 20 hours, or making 100 horsepower for 1 hour.  It's vastly different amounts of power, but the same amount of energy.

On to specifics.  You wrote:
To understand what the lie is, you need to know the purpose of a pumped-storage hydroelectric (PHS) power station. Like any power station, a PHS station produces electricity for consumers. It does so by converting the kinetic energy of flowing water into electricity. However, it has an additional purpose as indicated by the phrase "pumped storage."
Perhaps if you had looked up the Wikipedia article about pumped hydro storage sites, you would find that there are precisely 9 of them in the USA with a total nameplate capacity of 13,612 megawatts.  (This will go up by a few hundred MW as Ludington is upgraded with more advanced and efficient pump-turbines.)  This is not what they can store (equivalent to gallons of gasoline); it's their maximum instantaneous output (equivalent to engine horsepower).  Average US grid demand is on the order of 450,000 MW.  All the PHS plants in the USA, running flat-out, can serve roughly 1.5% of average US grid consumption.

Obviously, there's a lot more than 13,612 MW of total hydro capacity on the US grid (Jacobson lists 87,480 MW).  Just as obviously, the vast majority of it is NOT pumped hydro.  The only energy they can store is the energy delivered by the rainfall feeding into their reservoirs.  This is limited by many factors, including minimum river flows for ecological reasons.  One thing they can't do is reach down and pull water back out of their outflowing rivers to store energy again.

When more electricity is generated in the electrical grid than is necessary, it needs to be disposed off somehow. It can be burnt off, but a better solution is to find a way to store that electricity until it is needed. In a PHS, electricity is stored by using the extra electricity to pump water into a reservoir at a higher elevation. Later, that water can be released to produce electricity. It is basically a battery you can charge when you have extra power and discharge when you need more power.
You can't generate more power than the grid needs, not for a significant time or fraction.  The reasons why involve BSEE-level mathematics which you obviously don't have, but the point is that there are NO significant stores of energy in the grid proper except for the sheer mechanical inertia of its large synchronous rotating machines (both generators and motors).  If you pump in power over consumption, those machines speed up past their rated speeds; a power deficit causes an underspeed.  Too much of a deviation trips generating plants off the grid and causes a blackout.  Generation must match load to a very high degree instantanously, and even more closely over time.

PHS systems can function as both generators and loads, but... 1.5% of average grid consumption.  That's a handy ±1.5%, but it's still only 1.5%.

If a power station produces 100 GW every hour, no more, no less, would we say it is impossible for it to output 1,000 GW in a single hour? I would hope not. If the station's electricity wasn't needed for 10 hours, it might store up 1,000 GW.
Aside from impoundment-fed hydro stations (both pumped and otherwise), the only stores of energy in powerplants on the grid are:
  1. Coal stockpiles at coal-fired plants.
  2. Oil tanks at oil-fired and dual-fueled steam and gas-turbine plants.
  3. Uranium in the cores of nuclear power plants (by far the largest of all).
Nothing else stores significant energy.  A steam-turbine powerplant can cycle several million pounds of steam per hour from boiler to turbine to condenser and back to boiler.  There's nowhere in the plant to store millions or even thousands of pounds of steam, and the turbine can only accept it so fast.  The alternator which converts the turbine's output to electricity has its own instantaneous and sustained power limits, as do the transformers which put it out to the grid and the wires themselves.  It doesn't matter HOW many gallons-equivalent of gasoline you've got, you can only USE it as fast as the horsepower of your engine.

I will stop rubbing your face in your embarassment here.  I hope you have learned a lesson. 
Sunday, October 22, 2017

Time to flush the Jon

Over at Atomic Insights, the resident troll went on a tirade (since deleted).  I didn't think to save the whole thing, but since I went to the trouble to counter-troll him I figured I'd post it here.

All blockquoted material was posted under the name of Jon Hall.
And a reported $274,000 on twitter, to say nothing of the army of russian bots posting anti-clinton tweets by the hundreds of thousands.
Most of which were being blocked, no doubt.  Any time an anti-left meme or hashtag starts to trend, Twatter likes to remove it from view.

I'm amazed that Jonny here thinks that less than $500k overall could change the outcome of an election where Hillary raised and spent $1.2 billion.  It's like he attributes magical powers to Putin.  DEMONIC powers, perhaps.  Spooky action at a distance.
So “patriots” like EP would quote them by rote, like a package tray bobble doll.
Dude, I've never even had a Twatter account.  I last posted on Gab months ago.  I have no time to do the energy coverage I wanted to do.
So putin contributed to environmental groups, through shell companies, with economic motives. So that american natural gas would take a back seat to russian fuel in the global market.
Chesapeake Energy contributed to the Sierra Club to promote US natural gas over nuclear power, and you're okay with that?
So, whats that tell you about Tillerson, and the obvious collusion that many of trump’s lackeys and family members engaged in?
Compared to US foreign policy for sale on Hillary's watch, Lois Lerner's IRS blatantly tampering with the tax treatment of right-leaning groups, and the Obama/Holder/Lynch effort to persecute police officers for shooting Black perps no matter how well justified feeding a de-policing that has spiked murder rates in several major cities and already accounted for more additional fatalities than the entire history of lynching in the US?

I'm still holding my nose, but I've been able to get rid of the bunny suit and air pack.
You will turn a blind eye to a deranged, petty, and dangerous potus, who lies daily, and jeapordizes our world standing and national security. All to pursue an agenda that is entirely self serving.
You're 8 years too late recognizing that Ob... oh, wait, you're serious.

Ha ha.
This site DESERVES the likes of EP, and his racist hateful screed, that the lot of you are too cowardly to confront.
All you have to do to be racist these days is to notice who is doing all the shootings in Chicago (and everywhere else they've been shoved on Section 8 vouchers) instead of blaming it on rural redneck gunowners in Montana and Arkansas.  Can't mention the bleeding obvious.  It's unfair to the poor oppressed murdering gang-bangers and that spooky action at a distance means that Wrongthink anywhere is a threat to some modifier-preceded notion of "justice" everywhere.

And that's why this country is descending into civil war.  You just can't let anyone be.  Heaven help you when people realize that your attribution of evil to people on the right is projection rather than a mistake and end the problem... because nobody else will.

Labels: ,

Tuesday, September 26, 2017

Most people are idiots. Case in point:

I bring you to this page at  Direct quote:
The 12 flywheels employed by electricity users and utilities store about 77 MW of energy.
If a presumptive energy blogger does not know the difference between MW and MWh, one should be removed directly from one's keyboard and publicly flogged.

I can find no putative author or contact address on this blog.  This is probably a good thing... for the author.  Nothing on that blog or attributed to that blogger is credible; the author is obviously incompetent in the specific subject matter. 
Saturday, September 02, 2017

Pathetic performance of tidal power station lauded as "world record"

In a "record month" at the MeyGen tidal power project in the Pentland Firth... I'll just quote them:

A tidal power station in the Pentland Firth between mainland Scotland and Orkney has broken the world record for electricity generation....
In an update on the progress of the MeyGen project, by Atlantis Resources, the company said it had generated 700 megawatt-hours of electricity in August, a world record amount.
For those who are not so good at doing arithmetic in their heads, August has 31 days.  31 days is 744 hours.  700 MWh divided by 744 hours is less than 1 megawatt average output.

The MeyGen project appears to be in phase 1A, with only 3 MW of turbines installed.  Dividing 941 kW average generation by 3 MW yields a 31.3% capacity factor.  There are wind farms which do considerably better than this.  Comparing this to an 1150 MW(e) nuclear plant operating at 90% capacity factor, it would take 2200 MeyGen-scale turbines to equal the nuclear plant.  That is a lot of turbines.

The projected cost of this is staggering.  In phase 1C:
We will build an additional 49 (73.5 MW) turbines at MeyGen at an estimated cost of £420m
This would be 55 total turbines.  If phase 1C has the same per-unit capacity and cost as the first 6 units, the total cost would be £471m for 82.5 MW of nameplate generation.  At 31.3% capacity factor, that is £18.3 per average watt.  Only the ultra-wealthy could afford this.  It makes the Hinckley EPRs look positively cheap.

And what about the environment?  Tidal power works by blocking water flows and generating power from the difference in hydraulic head.  It reduces the difference between low and high tide wherever it's used, reducing the size of the intertidal zone which is home to a great many forms of life.  What are the economic losses from this?

Some things are obvious mistakes.  Tidal power needs to be left to drift away on the tide.
Monday, June 05, 2017

New comment moderation policy at The Energy Collective

TEC editors decided to moderate (and often edit, without notice or attribution) all comments on the site.

This was done without making any announcement, and nobody responds to e-mails.

Discussion is open here.

Edit:  The editors are also censoring cites of their own, published policy posted in reply to people wondering out loud what happened.  They are evil.

Edit 2:  Here is Roger Arnold's comment where he wonders what's going on:
Nice article, and Willem’s comments and links are excellent.

This is mostly just a test. Elsewhere, I’m getting “your comment is being held for moderation”. Have I fallen from grace generally, or is it something peculiar to the article on which I tried to comment?
Here's what I wrote in reply:
It's not just you.  The site imposed a brand-new comment moderation policy without making any sort of announcement.

One of the effects I've seen is that nothing happens on weekends.

The staff do not respond to e-mails (I've mailed them enough lately) so if anyone wants to discuss these issues I invite you over to The Ergosphere.
They have published comments posted later than this one, but are censoring a pointer to their own new policy.  This is proof of a guilty conscience.  They know they're doing wrong.

Thursday, May 25, 2017

Schooling an idiot

Some wag once wrote to the effect of "Never argue with an idiot; people may not be able to tell which is which."  On the other hand, if nobody bothers to school idiots publicly the public may begin to take their nonsense seriously.  And on that note....

Over at The Energy Collective a clown calling himself Joe Deely says that the exercise of analyzing California's daily load and generation curves to determine what can actually decarbonize its grid is a fantasy scenario.  This has some very strong suggestions that "political reality" is immutable, and physical reality is the fantasy.

With that in mind, let us take the example handed us:  the CAISO RE generation and net demand curves for May 19, 2017.  Solar, wind and hydro are not broken out separately but the latter two are a fairly small part of the peak and total generation for the day, and are obviously 10-15% of the minimum load at most.  Solar is the big kahuna in Commiefornia.

With that in mind, I first did a graphical analysis of the daily load curve.  I erased the grid lines below the load curve and filled the white space with green:

Per The Gimp's histogram function, 316923 pixels were green.  Given the delta of 48 to 915 on the X axis (hour 0-24) and 10 to 464 on the Y axis (32,000 MW to 0), a total consumption of 768,000 MWh would correspond to 393,618 pixels.  Given vagaries of the width of lines vs. their centers, this suggests that the consumption for the day was roughly 768000 * (316923 / 393618) = 618358 MWh.

Given the X width of 863 pixels and the variance from 172 (~20,000 MW) to 464 (0 MW) on the Y axis (Δ=292 px), the area of base load is 251,966 px or 491,677 MWh.  If the total minimum 24-hr demand was served by 24/7 carbon-free power such as nuclear, the total electric generation would be 79.5% carbon-free.

BUT THAT'S NOT ALL!  Nuclear is supposedly hard to ramp down, but that's the characteristic of light-water reactors, not electric output!  Nuclear-heated steam, being carbon-free, can be dumped to secondary uses or or waste heat without adding any pollutant emissions whatsoever.  So, let us suppose that 20% of peak nuclear power can be dumped and peak nuclear power is 25000 MW (with no carbon-emitting capacity being started until demand rises beyond that).  This yields a graph where 291,990 px of area are colored green out of a total of 316923 px of demand, or 92.1%.

California is supposedly striving for 50% or 60% "renewable" power by some year, but with nuclear base load it could already have reached 79.5% emission-free; with a bit of dumping it could have achieved 92.1% emission-free on the specified day.  Yes, "renewables" could have eaten into the remaining 7.9%, but would they actually have been important enough to tout?  Not really; the existing solar contribution of perhaps 12,000 MW is already twice what appears to be actually required.

If you "blew up" that day's RE contributions so the peak was roughly equal to the demand peak, how much demand would you have left?  After some fiddling with images, I was able to paste the expanded RE curve over the demand curve and color in the un-met demand areas in blue:

If I'm doing my pixel-counting correctly, 112148 pixels have zero green component (the green, gray and white will not); this comes to 28.5% of demand un-meetable by unreliable RE even on the record day.  Even assuming that the overnight RE generation is also scaled up by a substantial factor, this falls well short of the all-nuclear baseload scenario at just 20.5% of demand un-met by carbon-free sources.

Failing to plan to meet the evening and overnight demand with carbon-free generation is planning to fail.  It cannot be done with "renewables", period; physical reality says no.  It is physically possible to achieve this with nuclear power, whether the political reality allows it or not.

"Renewables" in California, as elsewhere, are greenwashing.  If the so-called "environmental" organizations (and eveyone else) actually cared about CO2 emissions, they would be pushing nuclear energy as hard as they could.  Anyone who is anti-nuclear is anti-environment.

Tuesday, May 16, 2017

I just gave up on Energy For Humanity

I went through their website.  (I had it on my personal blog list for a while.)  When I came across things that bothered me, I dug for contact information...


These people neither expect nor want feedback.  Not even on their site design (why the HELL wouldn't they put timestamps on their main-page items, so you can see what's new and what's not?).

If they refuse to interact with me, I will neither read nor recommend them.  Eff U, E4H.  If you really care for humanity, you'll pay attention to what humanity says back to you.  Especially about the things that make your site painful or painless to use.

Evolve or die.
Wednesday, February 01, 2017

Wait, did they actually write that?

This (backup archive link) is what passes for analysis among "green" energy bloggers:
The option of an oversized, intermittent renewable-energy-sources system to feed the storage is also ineffective. This is because, in this case, energy can be taken directly from the large intermittent supply, making storage superfluous.
Let that sink in for a minute.

The staff of Solar Daily wrote, in all apparent seriousness, that over-producing electricity to store for later is "ineffective" because the energy could be used immediately.  This is like saying that keeping a bank account is "ineffective" because you could spend your entire paycheck immediately when you get it.  This is utterly illogical and incoherent.  Obviously one often needs money in between paychecks.  Obviously, the same is even more true of energy.  But they can't bring themselves to say so.

If I had to guess at the state of mind of the people who wrote it, I'd have to say that this is the product of some serious cognitive dissonance.  The facts force a conclusion that they simply cannot admit to themselves, so they engage in tortured language to try to rationalize it away.  I'll bet that they breathed a collective sigh of relief when they were done sweeping the issue under the rug... again.  But what will they do when it returns?  It's not going away.

The truth of the matter is that, aside from pumped hydro, even overnight storage of electric power is far too costly to be acceptable.  This unwelcome truth is why Germany plans to continue digging and burning lignite forever, while its pumped-hydro storage plants go broke.  And that is why the Energiewende is failing, YoY German carbon emissions are rising, and the earth's climate is apparently doomed to shift radically in the next century.  It's because of a lack of honesty; too many of us cannot admit to ourselves when we are wrong. 
Saturday, December 03, 2016

Fast, cheap, good biofuels: Can we have all 3?

Converting biomass (lignocellulose) to high-quality liquid fuels has been a huge, costly headache since the first log was retorted to make wood alcohol.  Acid hydrolysis of cellulose is costly and leaves lots of sulfate to deal with.  Enzyme hydrolysis is also costly in materials and typically slow.  Various types of pyrolysis have their good and bad points, but while some products like "liquid smoke" flavoring are never going to go out of style while people still eat barbecue, none appear to have ever made it as a source of commodity energy fuels.

That may have just changed.  Even more interesting, the crucial advance hasn't come from a chemist or an agronomist, but astrophysicist Frank Shu.

Dr. Shu's second career may wind up being of world-changing importance to mankind.  As part of the company which he founded, Astron Solutions Corporation, he has re-thought the process of pyrolysis.  Rather than heating biomass in a stream of hot gas, his advance is to use a molten salt as the heat-transfer medium.  The volumetric heat capacity of salt is hundreds or thousands of times as great as thin hot gas, which radically increases the speed of the pyrolysis reaction.  It also allows the separation of the heat-generation and pyrolysis steps (not unlike processes such as chemical looping combustion).  Last, because hot salt can be supplied separately from the stream of off-gas from the pyrolysis step and even driven counter-flow, large molecules can be thermally cracked to lighter gases and coke rather than escaping as troublesome tars.

The (seminal, I think) paper from Astron Solutions Corporation is publicly available.  Pay particular attention to Table 2 on page 3.  The thermal characteristics of the molten salt medium yield an off-gas which is effectively a clean syngas needing no further processing before use in synthesis.  (It's also a HOT syngas, which may be significant.)

That synthesis is a matter of choice.  There are a host of available catalysts which each favor different products.  However, there are vendors of turnkey methanol synthesis plants which take streams of CO, CO2 and H2 and produce CH3OH.  Methanol is a room-temperature liquid which makes a good motor fuel, and is also a basis for further synthesis (e.g. Mobil's Methanol-To-Gasoline process).  That seems hard to beat for a first cut.

Analyzing Table 2 in more detail, I get this:

Amount (kg)
Heating value
Water (H2O)
Carbon Dioxide (CO2)
Methane (CH4)
Carbon monoxide (CO)
Hydrogen (H2)

Of these products, water is waste (though it can be used to wash residual salt out of char) and methane is essentially unreactive under reducing conditions.

One's eye is drawn to the last entry.  Hydrogen isn't much by mass but it makes up the whopping majority of the molar quantity of the products after water.  If a catalyst reacted all the CO and CO2 with hydrogen to make MeOH (it would make about 1.76 kg), there would still be 227 moles of it left.  This suggests that about 2x as much additional carbon could be converted to CO and reacted to MeOH.  This CO could come from e.g. gasification of the char fines in the salt mixture.

If 90% of the remaining hydrogen could be converted to MeOH, it would consume 2.45 kg of carbon and make an additional 6.54 kg of MeOH for a total of 8.30 kg.  Finding a way to recycle the methane and convert it as well would add another 1.48 kg for a total of 9.78 kg.  This is a liquid fuel yield of almost 49 wt% from wood (albeit 50% oxygen by weight).  It would also leave about 3.5 kg of char, almost 100% of it carbon.

If this yield can be produced from lignocellulose in general, a not-unreasonable 500 million tpy of biomass would produce over 240 million tpy of methanol and 87.5 million tpy of stable fixed carbon char.  At a density of 0.79 this comes to over 80 billion gallons of MeOH, some 5.2 million barrels per day.  If 80% of LDV motor fuel can be replaced by electricity via PHEVs, that would do for the remainder with plenty left over.

The remaining carbon char, if buried, would sequester 87.5 million tpy of carbon (some 320 million tpy of CO2-equivalent).  Char reportedly holds soil nutrients and increases water retention, improving fertility.

These are not the only possibilities.  If air-separation plants can be made small, cheap and reliable enough, the excess hydrogen could instead be reacted to produce ammonia.  I've read brief claims about catalysts which are fairly specific for ethylene as a product, rather than methanol.  Both are liquid at reasonable temperatures under relatively moderate pressure, so are easily shipped.

Motor fuel, plastics, fertilizer, a third of a billion tons of CO2 sucked OUT of the air... when can we get started? 
Saturday, November 12, 2016

Bleg: Clean videos of A-tests

I need some video of an above-ground nuclear test, shot from the ground, with no watermarks and the original sound with no music or voice-overs.  Everything I can find has some problem or other, and the original versions are buried way down the search results by all the crapped-up and promoted copies to the point where I wore out before I could dig that deep.

Tuesday, July 12, 2016

Quote without comment

... nuclear currently provides 75% of France’s electricity, supporting a 90% non-fossil grid, all without advanced batteries or [s]chedulable BEV charging. California is proposing to move to a renewable-rich grid (a 50 or 55% non-fossil grid), over a couple of decades, only to be 5 times dirtier than today’s French grid.
This is fraudulent environmentalism, and should be condemned in the harshest terms.
Nathan Wilson


Sunday, July 03, 2016

The weather right now

An update for the region today:

Thursday, June 30, 2016

What KQED and FAIR aren't fair to

Straight talk.  I posted this to KQED's discussion of the Diablo Canyon shutdown last night:
But as more renewable energy comes online, running renewables, natural gas and other power sources all together sometimes creates more power than the state needs. At those times, the California ISO has to switch off solar farms to avoid overloading the grid.

Retiring Diablo Canyon could help with that problem.
So instead of turning down some unreliable generators which can only generate at peak for maybe 3-4 hours a day (and never at the peak demand hours in the evening), they propose to kill an emissions-free generator which runs at peak 24/7.

Why isn't the word "insane" applied to these people?  Or, if denial of the threat of climate change is a crime, the word "criminal"?
The nuclear plant is designed to run at a steady, constant level. Nuclear advocates have argued that the state needs this kind of “baseload” power. Others say shutting down Diablo could actually improve grid management.

“It will reduce the need to curtail our solar power plants,” said Cavanagh.
It's hard to say what's nuttier here:  that the logic of curtailment is totally backwards, or that nobody dares to say that it's totally backwards.  It's as if California's government and media are run by paranoid schizophrenics who freak out over the potential of some tiny radiation exposure from a nuclear power plant, and then relieve their tension at a natural hot-spring spa where the waters and air are full of radon and radium... which come from decaying uranium.

In a California that was not ruled by the insane, the state would be building out its entire base-load to be carbon free.  Diablo Canyon would be pushed to renew its licenses to the 2040's and beyond.  San Onofre would be repaired and running.  Rancho Seco would still be on-line, and Bodega Bay would be one of the jewels of California's GHG-free generation portfolio.  Generators which cannot run when needed would take a back seat to those which can, and all air emissions would be taxed either internally (via preferences and feebates) or explicitly.

Sadly, nothing about California's energy priorities is sane.  Not one thing.

And this comment in reply to TeeJae at FAIR a couple days ago:
Your attempt to counter studies you’ve never seen is not only intellectually dishonest, it’s laughable.
I've seen Jacobson's "work".  I could tell it was fraudulent from the ridiculous level of precision it specified.  His "Solutions Project" specifies that Washingtion state could power itself with 0.5% wave devices, 0.3% tidal turbines, and 35% onshore wind.  Really, he can specify these things to a tenth of a percent?  And he can rely on on-shore wind for more than a third of total generation, when the wind over the entire BPA area can go AWOL for almost 2 weeks at a time?

Have you looked at the personnel at The Solutions Project?  There are a bunch of "directors" and a "producer", but not one engineer or scientist on the staff.  It is staffed like an ad agency, which it is.  Its product is not science; it cannot be.

You ruinable religionistas need to be forced to live according to your own dogmas until you either prove them workable or die trying.  If I didn't have you bums insisting that I MUST NOT BE ALLOWED NUCLEAR POWER, I'd be just fine year-round TYVM.
If my desire to protect people and planet makes me a “sorry excuse for a human being” in your eyes
Protect people and the planet from WHAT?  You're certainly not protecting either from climate change or air pollution; if you were, you'd be steadfastly opposed to the Energiewende and the shared German/Danish idiocy of burning coal to make up for the vagaries of wind.

If you wanted to protect people from air pollution, you'd look at the success stories.  Toronto hasn't had a smog action day in some time.  Not coincidentally, Ontario shut down its Nanticoke and Thunder Bay coal-fired power plants.  This was made possible by the restart of nuclear reactors at Bruce Point.  Are you so deluded that you think this is NOT protecting people and the planet?
what does your desire to protect corporate profits say about you?
You are so stupid.  I tell you how much corporate profit is destroyed by the cheapness of nuclear fuel, and you accuse me of wanting to protect those profits.  Were you born that dumb, or did you have to study?
Bringing fossil fuels into the discussion is another tell-tale sign of a pro-nuclear shill. Despite your best straw-man efforts, fossil fuels are irrelevant to this topic.
Fossil fuels are irrelevant to the health of the planet?  WTF?!

You're either a climate denialist or insane.  It's impossible to tell which via this medium, but the total logical disconnects in your statements indicate one or the other.
Neither of these comments will see the light of day under the censorship regime of these two "press" outlets.

This country, and especially its media, need a long trip on the Straight-Talk Express.

Labels: ,

Talk largely about energy and work, but also politics and other random thoughts

Mail Engineer-Poet

(If you're mailing a question, is it already in the FAQ?)

Important links

The Reference Library

Blogchild of

Armed and Dangerous

Blogparent of


The best prospect for our energy future:
Flibe Energy

January 1990 / February 2004 / March 2004 / June 2004 / July 2004 / August 2004 / September 2004 / October 2004 / November 2004 / December 2004 / January 2005 / February 2005 / March 2005 / April 2005 / May 2005 / June 2005 / July 2005 / August 2005 / September 2005 / October 2005 / November 2005 / December 2005 / January 2006 / February 2006 / March 2006 / April 2006 / May 2006 / June 2006 / July 2006 / August 2006 / September 2006 / October 2006 / November 2006 / December 2006 / January 2007 / February 2007 / March 2007 / April 2007 / December 2007 / January 2008 / May 2008 / June 2008 / August 2008 / October 2008 / November 2008 / December 2008 / February 2009 / March 2009 / April 2009 / May 2009 / June 2009 / July 2009 / August 2009 / September 2009 / October 2009 / November 2009 / December 2009 / January 2010 / April 2010 / May 2010 / June 2010 / July 2010 / August 2010 / September 2010 / October 2010 / November 2010 / December 2010 / January 2011 / February 2011 / March 2011 / April 2011 / May 2011 / July 2011 / August 2011 / September 2011 / October 2011 / April 2013 / November 2013 / December 2013 / January 2014 / February 2014 / March 2014 / April 2014 / July 2014 / August 2014 / September 2014 / October 2014 / November 2014 / February 2015 / April 2015 / October 2015 / March 2016 / April 2016 / May 2016 / June 2016 / July 2016 / November 2016 / December 2016 / February 2017 / May 2017 / June 2017 / September 2017 / October 2017 / November 2017 / March 2018 / May 2018 / June 2018 / October 2018 /

Powered by Blogger

RSS feed

Visits since 2006/05/11: