The Ergosphere
Monday, October 31, 2005

Alternative energy is civil defense

So far as I can tell, George Mokray originated the phrase "Solar is civil defense".  I think this statement is just a bit too narrow.  I believe we should be saying alternative energy is civil defense.

As I noted elsewhere, "Sustainability is security.  A farmer who needs no diesel can't be forced out by rising fuel prices."  I believe this generalizes well beyond farming:

In short, alternate energy eliminates many of the problems which turn natural disasters and economic problems into crises.  Take the aftermath of hurricanes Katrina, Rita and Wilma:  broad swaths of several states were emptied of motor fuel and had no electricity to pump what was left.  People may have had generators, but they only offered a temporary respite:  the ability to resupply them depended on the very infrastructure of roads, filling stations and electrical grid that had been blocked, emptied or disabled as a consequence of the storms.  In engineering terms, these elements are "single points of failure"; any one of them going out leads to the rest failing, either immediately or eventually.  Sustained outages lead to broader and more severe consequences.


I took a look at a solar site just the other day, and I found some large (300 watt) PV panels for sale for a breathtaking $4/peak watt.  Suppose that we were using these panels as post-hurricane backup power.  If this panel derated 10% due to temperature and got the equivalent of 6 hours of full sun per day, it would generate 1.62 kWh/day.  The Japanese have refrigerators which use less than 450 watt-hours per day, but suppose the refrigerator uses 750 Wh/day; that leaves 870 Wh/day.  3 CF lights at 15 watts each from 6 PM to 11 PM would consume 225 Wh/day, leaving 645 watt-hours/day.  This electricity could run a well pump to supply essential water (drinking, cooking, sponge baths) and any surplus could run radios, laptops or charge the battery of something like a Prius+ for a couple miles per day of driving without motor fuel.  Such an existence would be spartan, but these things plus some non-perishable food and cooking fuel (propane, charcoal or even firewood) would allow people to live more or less indefinitely without any health or welfare crisis.  There would be no civil-defense emergency.

All that for a mere $1200, plus inverter/controller and installation; produced and installed by the millions, that overhead might be small.  It could work during non-crises too, offsetting the electric bill and cutting peak demand.  Ten million such units might cost as little as $15 billion, and could generate perhaps 5.9 billion kWh/year.  This is a minuscule fraction (about 0.15%) of the total US electric generation of nearly 4,000 billion kWh/year, but great oaks from little acorns grow.


Consider the other extreme, such as a winter in Maine or New York.  Most homes are heated with natural gas, LPG or fuel oil, but the heating plant does not operate without electricity; a severe ice storm means no heat as well as no light, no well water and impassable roads.  This quickly leads to crisis conditions for many people, and broken pipes and other damage which takes much time and money to repair.  Fuel shortages hurt too; the steep rise in fuel oil prices has caused a shortage of both firewood and fuel for pellet stoves.

This would be far less difficult with cogenerating furnaces.  If the typical oil-burning furnace was replaced with a cogenerator based on a Lister-clone 6/1 diesel (30% efficient, 4400 W mechanical output) driving a generator and/or heat pump, the only electricity required would be a starting battery.  Efficiency could leap:  the cogenerator could supply 60% of the fuel value directly as heat (10% losses), plus another 30% routed through a heat pump to multiply it 3:1 (another 90%).  Total heat supplied could be as much as 150% of the heating value of the fuel used to drive it, cutting cost by a third; the unit would pay for itself even when there was no grid damage.  If electricity could be used to charge batteries in a plug-in hybrid car, the net fuel use might actually be negative due to the greater efficiency of the diesel.

Improvised fuel

Let's not forget farmers and everyone else currently being squeezed by our shortage of diesel fuel.  During both world wars, fuel shortages forced many people to find substitutes for petroleum to run their vehicles.  One common substitute was fuel gas made from the partial combustion of wood or charcoal.  The devices to make this gas were called gasogenes.  More recently, the US government tested a wood-gas generator suitable for tractors and published detailed plans in case of a fuel crisis.

High-octane gaseous fuels can be co-fueled in diesel engines; the fuel gas is ignited by a small amount of diesel oil.  Power is reduced by the displacement of air, but the engine can still accomplish useful work.  Many farms have large amounts of crop wastes which could be used as fuel for a gasogene, and gas generators have been studied both as emergency fuel sources and as waste utilization systems relatively recently.  It seems safe to say that many farms could slash their fuel costs and remain profitable in times of high fuel prices (like now) using fuel gas made from crop wastes.  Yet banks are refusing to loan money for next year's crops rather than promoting self-produced fuels.

An acre of corn may yield 2.5 tons of biomass as stover (stalks and cobs).  At 15.8 million BTU per short ton and 50% gasifier efficiency, a one-ton bale of dry biomass could replace about 54 gallons of diesel fuel.  That's considerably more fuel than it takes to plant, cultivate and harvest a typical acre.  Corn farmers could be self-sustaining in fuel for their equipment, but fuel costs are putting them out of business.  Why?  Shouldn't we have a "victory fuel" effort instead of capitulating?


Moderate efforts toward efficiency and alternative fuels could yield huge dividends in fuel cost reductions and reduced vulnerability to energy-supply disruptions.  Our society would be better off both during and between disasters if we adopted some simple measures.  Our organizations from the federal government on down should be investigating to see what works and then promoting it.

We need a program of alternative energy as civil defense.  This has not happened; we need to start asking why not.

Good title.
To what extent are natural-gas pipelines independent of the electrical grid? My impression is that they mostly run on turbines which take gas for the pipeline you know if that's correct? Are the telemetering and supervisory control systems also independent of grid power?
meant to say 'from the pipeline itself'g
Apparently, most pipeline pumps are electric these days.  The California power situation a few years ago was made considerably worse by the shutdown of the pumps on the gas pipelines moving the fuel used for many of the generators.

(Talk about cascading failures.)
EP - the Danish have several low power fridges, Vestfrost, that market all over the world. Ones like the BKS360 use 460W/Hrs per day. I don't know if they are for sale in the US. Sundanzer ( have a range of 12V and 24V fridges and they are in Texas.

The post is a good one and people as renewable power becomes more prevalent people should have some local storage and generating capacity. It is a really good idea.
Sundanzer's got some interesting products (and at 589 Wh/day at 110 F, they'd serve nicely even on the Gulf coast in summer) but I'm not sure how ready people are for a fridge that only opens from the top.  Then there's the matter of the wall-wart. ;-)

This is a notion and not a system design, but I'll opine that any need for special wiring is probably a killer.  The system should be plug-and-play as much as possible.
I like the sentiment. I just bought a bumper sticker that reads: "Renewable Energy is Homeland Security"

You can buy them here.
Post a Comment

<< Home
Talk largely about energy and work, but also politics and other random thoughts

Mail Engineer-Poet

(If you're mailing a question, is it already in the FAQ?)

Important links

The Reference Library

Blogchild of

Armed and Dangerous

Blogparent of


The best prospect for our energy future:
Flibe Energy

January 1990 / February 2004 / March 2004 / June 2004 / July 2004 / August 2004 / September 2004 / October 2004 / November 2004 / December 2004 / January 2005 / February 2005 / March 2005 / April 2005 / May 2005 / June 2005 / July 2005 / August 2005 / September 2005 / October 2005 / November 2005 / December 2005 / January 2006 / February 2006 / March 2006 / April 2006 / May 2006 / June 2006 / July 2006 / August 2006 / September 2006 / October 2006 / November 2006 / December 2006 / January 2007 / February 2007 / March 2007 / April 2007 / December 2007 / January 2008 / May 2008 / June 2008 / August 2008 / October 2008 / November 2008 / December 2008 / February 2009 / March 2009 / April 2009 / May 2009 / June 2009 / July 2009 / August 2009 / September 2009 / October 2009 / November 2009 / December 2009 / January 2010 / April 2010 / May 2010 / June 2010 / July 2010 / August 2010 / September 2010 / October 2010 / November 2010 / December 2010 / January 2011 / February 2011 / March 2011 / April 2011 / May 2011 / July 2011 / August 2011 / September 2011 / October 2011 / April 2013 / November 2013 / December 2013 / January 2014 / February 2014 / March 2014 / April 2014 / July 2014 / August 2014 / September 2014 / October 2014 / November 2014 / February 2015 / April 2015 / October 2015 / March 2016 / April 2016 / May 2016 / June 2016 / July 2016 / November 2016 / December 2016 / February 2017 / May 2017 / June 2017 / September 2017 / October 2017 / November 2017 / March 2018 / May 2018 / June 2018 / October 2018 / December 2018 / January 2019 / March 2019 / June 2019 / October 2019 / November 2019 / March 2020 / June 2020 / December 2020 / March 2021 / April 2021 / May 2021 / July 2021 / January 2022 / February 2022 /

Powered by Blogger

RSS feed

Visits since 2006/05/11: