MHPS and Magnum Development have partnered on the idea of building an electrolysis facility near the Intermountain Power Plant around Delta, Utah. The electrolysis–which uses electricity to separate water into its hydrogen and oxygen molecules–would be powered by renewable energy, such as western U.S. solar, wind and hydro. The resulting hydrogen would be stored in underground salt caverns deep beneath the Utah rocky soils.A really really big, if rather lossy, battery. I note that storage in salt domes avoids any issues of sulfate minerals which hydrogen could react with and be lost as hydrogen sulfide and water. You'd likely have that trouble if you tried to use old gas wells to store hydrogen. Methane is an extraordinarily stable molecule; hydrogen is not.
Ducker estimated that each of those salt caverns potentially could store 150,000 to 200,000 MWh of hydrogen capacity. The area could offer dozens of those caverns, all impermeable and yielding no energy loss.
“Think of it as a really really big battery,” he said.
Once commonly considered a “bridge fuel,” electric utilities now must face the mathematical reality that fast-falling clean energy costs mean the bridge only leads to climate breakdown and the destruction of shareholder value.Natural gas is being used as the backup fuel for balancing the unreliable supplies from wind and solar. It is delivered on a just-in-time basis and cannot be stockpiled, so it is inferior to coal as a buffer against supply disruptions or demand surges. However, it is currently cheaper than coal so those deficiencies are being overlooked until crises like the "polar vortex" strike.
A new report from Energy Innovation and shareholder advocacy group As You Sow outlines these evolving risks for shareholdersIn other words, O'Boyle's group.
Utility investment in new natural gas infrastructure makes less and less sense from multiple angles and only compounds risks for investors, consumers, and society. New natural gas infrastructure is incompatible with a low-emissions future and faces intense economic competition from wind[1], solar[2], storage[3], and clean energy technologies[4].Now wait just a second.
Greater scrutiny of fossil fuel infrastructure at the regulatory commission level also looms large. Financial and climate concerns have recently led several local commissions to reject utility plans for new gas power plants including Indiana, Arizona, and California. These actions point toward a future where demand for gas is limitedUnless there is another source of energy to fill in for the frequent absences of wind and solar, gas will still be required. The requirements will not be as much overall, but peak demand will remain and perhaps even increase as efficient combined-cycle plants are shut down and replaced by open-cycle peakers.
Today, new unsubsidized wind costs $28-54/megawatt-hour (MWh), and solar costs $32-44/MWh, while new combined cycle natural gas costs $44-68/MWh. In short, in almost all jurisdictions, utility-scale wind and solar are now the cheapest source of new electricity without subsidies.Using LCOE is deliberate deception. LCOE ignores the costs of firming and backup, which O'Boyle wants everyone to ignore. The only even-somewhat valid figure of merit for unreliable generators is Levelized Avoided Cost of Energy (LACE).
For example, NV Energy’s recent procurement of 1,200 megawatts (MW) solar and 580 MW of four-hour battery storage already beats new natural gas on price. NV Energy paid $20/MWh for solar and $13/MWh for enough battery storage to shift 25% of daily energy, resulting in a total cost of $33/MWh per MWh delivered (including federal tax credits).We're supposed to ignore "including federal tax credits" because we can all make out better by robbing someone else's taxes paid to fund our own energy consumption. Not.
While often cited as the clean energy transition’s largest barrier, it is increasingly clear new natural gas won’t be needed to ensure grid reliability.And who's saying this?
Studies by the National Renewable Energy Laboratory, National Oceanic and Atmospheric Administration, Evolved Energy, and Vibrant Clean Energy have found that 80% or more of our electricity could be produced from renewable sources without reliability or affordability issues.A bunch of highly biased parties. Tell it to Germany, which isn't remotely close to 80% "renewable" but whose Energiewende "is regarded in academic circles today as disastrous."
Additional gas capacity, baseload generation 'critical' to maintaining reliability: DOE analysisTotal hits for "nucl": 3.
Dive Brief:
Dive Insight:
- A new analysis from the U.S. Department of Energy's National Energy Technology Laboratory (NETL) concludes additional natural gas pipeline capacity and baseload generation units, such as coal and nuclear, are "critical" to maintaining grid reliability and affordable electricity in the Eastern Interconnection during extreme weather events.
- Coal power advocates argue that the continued retirement of coal-fired generating units threatens grid reliability and could lead to double-digit spikes in electricity prices in several wholesale markets, but clean energy advocates counter that renewables are now the cheapest energy option and can keep the grid operating reliably.
- According to the NETL report, a "conservative" analysis shows investment in new pipeline capacity of more than $1 billion is needed to maintain reliability, though dual-fueled plants can partially relieve peak demand.
As more wind and solar energy comes online, the new DOE study questions whether those intermittent resources can maintain reliability in extreme weather.
“As the power sector relies more and more on natural gas and renewable sources for power generation, infrastructure must keep pace with this growth,” NETL Director Brian Anderson said in a statement.
....
NETL's report examines the near-term economic and reliability costs associated with expanding the natural gas generation network. The analysis concludes dual-fueled plants can partially relieve peak demand for natural gas, "but it will be difficult to maintain adequate fuel availability to meet that demand when more coal and nuclear resources are lost."
According to the DOE research, there is a need for additional pipeline capacity as thermal generating units are retired.
"Natural gas deliverability constraints lead to high fuel and electricity price spikes," the report find. It concludes those spikes are "exacerbated by the continued retirements of thermal units," which are expected to top 44 GW through 2024.
"Conservatively, an investment of $470 million to $1.1 billion over that already entrained in the long-haul natural gas transmission system is identified to avoid even worse outcomes," the report estimates.
Blogchild of
Blogparent of
Visits since 2006/05/11: |