Of all the fallacies of logic used by propagandists, the fallacy of composition is the one they seem to love the most. Guest poster Hannes Kunz is, I fear, a propagandist.
Kunz starts at the top of the section titled "Renewable energies - the fake fire brigade" (stealing RR's phrase). He lumps all "renewable" energy supplies (some of which are not renewable, as RR himself has explained at length) together, then picks the worst (corn ethanol) and uses that example to declare them all worthless.
That's simply not a valid argument. If I thought it was accidental I'd be giving him the benefit of the doubt, but he does it over and over again.
during [the last] 10 years, despite all the relative successes, renewable energies (including hydropower) grew by far less compared to the global increase in total energy consumption.Of all the invalid premises for arguments, this is one of the more sophisticated. But I can point to history for a similar argument. If we go back to the 16th or 17th century, there was a time when coal was just barely being tapped, but the Industrial Revolution was already taking off with inventions like water-powered woolen and cotton mills. Suppose some N-times-great ancestor of Kunz had said this:
Of course, the conclusion C is invalid. What matters is the size of the resource and the rate at which it can be produced, and people were just getting started with coal.
The argument is no more valid when Kunz uses it today. It is especially invalid when he illogically (and I'll bet deliberately, and thus dishonestly) lumps together highly limited and fossil-dependent products like corn ethanol with massive resources like wind, solar and nuclear. There is no comparing these things. For instance, the wind energy potential of the top 5 states in the continental USA (TX, KS, NE, SD, MT) is more than 20 petawatt-hours per year. This is an average of about 2.3 terawatts, which is greater than the ~2 TW of electricity consumed by the world in 2005.
It's not like the USA is special. The world's land and near-shore wind-power potential has been calculated to be 72 terawatts (Archer and Jacobson, cited here). And Kunz's straw-man of electric cars as the only storage devices is easily knocked down; the intermittency problem is getting some interest, and advances in technology.
(General Compression is very interesting. The company claims a response time of less than 6 seconds to demand changes, and rapid cycling from compression to expansion. With that kind of technology, it might find markets in grid regulation services as well as energy storage.)
But let's follow Kunz over to demand-side management. He writes:
Right now, all our electricity delivery systems are almost fully controlled from the supply-side, i.e. no usage restrictions apply, which is why we benefit so much. Customers don’t have to pre-order a certain amount of electricity before they can turn on a machine, a computer, or start cooking, but instead just do so, mostly oblivious to the fact that someone somewhere in a grid operations center will turn on a gas turbine, or let some water flow downstream, just because we flip a switch. A preliminary analysis conducted by IIER shows that less than 10% of electricity demand can theoretically be supply-controlled without severely impacting societies.Is that true? Not even remotely. Of the US domestic electric consumption of 2001, some 14% went to air-conditioning and refrigerators... each (electric water heating is another 9 percent). Energy for these is easily stored as hot water, ice or frozen brine. Making the refrigerator coast overnight or storing several day's worth of hot showers or A/C needs when a front blows through are technically simple things to do. The reason they aren't done is flat-rate billing, and utility regulators which have historically given a fixed return on investment. Wave money in front of people if they buy the 21st century Icier Box which does rate arbitrage automagically, and that will change.
I should mention here Kunz' figure of "28.5 million private vehicles are currently registered in the UK." If these were Chevy Volt-equivalents with only 8.8 kWh of usable storage and 240 V 13 A (3.1 kW) connections to the grid, they would comprise a potential 88 GW of controllable demand and 250 GWh of storage. If the electric energy consumption of Britain is 320 TWh/yr, that's an average of 36.5 GW; the EVs couldn't store even one days-worth of energy, but they could even out some mighty big imbalances for hours on end. Compressed air could start up in minutes and go for perhaps a couple of days. For the long-term stuff, you might have to (gasp!) burn something. Two days is plenty of time to crank up plants burning whatever, and if the long-term lulls aren't that frequent the total fuel required won't be much.
But let's change the subject to nuclear power, which Kunz characterizes as [1] uncontrollable, [2] high-cost, [3] dependent upon fossil fuels, and [4] with a limited supply of fuel. Aside from noting that he's been reading too much of both Dittmar and Storm and Smith, all of these are easily rebuttable:
How much energy is that? At about 0.8 tons per GW-yr, the 50,000 tons of SNF in US storage would yield over 60,000 GW-yr of power. The USA's electric power consumption is about 450 GW; 60,000 GW/yr / 450 GW = 133 years of power from spent fuel alone. When that runs out, the entire mass of depleted uranium tailings from 60 years of fuel enrichment is ready to go too; that adds perhaps 700 years. Even at a substantial growth rate, that's still over 100 years of demand without mining a single ounce of new uranium. And with so much more energy from a pound of uranium, mining the oceans is economically attractive.
Uranium isn't the end of the story, though. The Liquid Fluoride Thorium Reactor breeds thorium-232 to uranium-233. Thorium is about 4x as abundant as uranium.
Will Kunz add these wildcards to his analysis? He hasn't thus far. If he's more honest than Michael Dittmar, his tune is about to change.
Blogchild of
Blogparent of
Visits since 2006/05/11: |